Lichnerowicz-type equations with sign-changing nonlinearities on complete manifolds with boundary
نویسندگان
چکیده
منابع مشابه
The Lichnerowicz Equation on Compact Manifolds with Boundary
In this article we initiate a systematic study of the well-posedness theory of the Einstein constraint equations on compact manifolds with boundary. This is an important problem in general relativity, and it is particularly important in numerical relativity, as it arises in models of Cauchy surfaces containing asymptotically flat ends and/or trapped surfaces. Moreover, a number of technical obs...
متن کاملHigher Order Multi-point Boundary Value Problems with Sign-changing Nonlinearities and Nonhomogeneous Boundary Conditions
Abstract. We study classes of nth order boundary value problems consisting of an equation having a sign-changing nonlinearity f(t, x) together with several different sets of nonhomogeneous multi-point boundary conditions. Criteria are established for the existence of nontrivial solutions, positive solutions, and negative solutions of the problems under consideration. Conditions are determined b...
متن کاملPOSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS WITH SIGN CHANGING NONLINEARITIES DEPENDING ON x′
Using a fixed point theorem in cones, this paper shows the existence of positive solutions for the singular three-point boundary-value problem x′′(t) + a(t)f(t, x(t), x′(t)) = 0, 0 < t < 1, x′(0) = 0, x(1) = αx(η), where 0 < α < 1, 0 < η < 1, and f may change sign and may be singular at x = 0 and x′ = 0.
متن کاملMultiple Positive Solutions for Second-order Three-point Boundary-value Problems with Sign Changing Nonlinearities
In this article, we study the second-order three-point boundaryvalue problem u′′(t) + a(t)u′(t) + f(t, u) = 0, 0 ≤ t ≤ 1, u′(0) = 0, u(1) = αu(η), where 0 < α, η < 1, a ∈ C([0, 1], (−∞, 0)) and f is allowed to change sign. We show that there exist two positive solutions by using Leggett-Williams fixed-point theorem.
متن کاملPositive solutions of discrete Neumann boundary value problems with sign-changing nonlinearities
R + →R is a sign-changing function. In recent years, positive solutions of boundary value problems for difference equations have been widely studied. See [–] and the references therein. However, little work has been done that has referred to the existence of positive solutions for discrete boundary value problems with sign-changing nonlinearities (see []). Usually, in order to obtain posit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2017
ISSN: 0022-0396
DOI: 10.1016/j.jde.2017.08.010